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ABSTRACT

SEO, KAB SIK. Electron Spin Resonance Investigations and
Surface Characterization of TGDDM-DDS Epoxy and T-300
Graphite Fiber Exposed to Ionizing Radiation (Under the
direction of Drs. R. E. FORNES and R. D. GILBERT)

In an effort to elucidate the changes in molecualr
structural and mechanical properties of epoxy/graphite fiber
composites upon exposure to ionizing radiation in a
Simulated space environment, spectroscoﬂic and surface
properties of tetraglycidyl-4,4'-diamino diphenyl methane
(TGDDM) cured with diamino diphenyl sulfone (DDS) and T-300
graphite fiber were investigated following exposure to
ionizing radiation.

Cobalt—-60 gamma—-radiation and 1/2 MeV electrons were
used as radiation sources., The system was studied using
electron spin resonance (ESR) spectroscopy, infrared
absorption spectroscopy, contact angle measurements, and
electron spectroscopy for chemical analysis.

Two kinetically-distinguishable (fast-decaying and
slow-decaying) radical species are produced in TGDDM-DDS
epoxy upon irradiation and their decay behavior £§ strongly
affected by the crosslinking density distribution in the
cured epoxy. The fraction of fast-decaying radicals
increases with increasing decay temperature while the decay

rate constant of slow-decaying radicals does not depend on




the decay temperature. The fast-decaying species are most
likely associated with alkyl type radicals such as

H

-CHy-C~CHy-, -C-, and -€: and the long-lived (at room

- Q-m
m-0-0

temperature) species associated with oxygenated radicals
such as alkoxy (-éo-) and peroxy (-é00~) radicals trapped in
highly crosslinked regions of the epoxy. At an elevated
temperature, additional radical species probably acyl

(o}
radicals (-C+), are produced giving a narrow component (AH

ppP
¢ 13 G) in the ESR spectrum. Unirradiated T-300 graphite
fibers have a large concentration of free radicals (1019—
1020 spins/g), thu$ overshédow any change in ESR spectra of
irradiated composites.

The surface energy of epoxy increases monotonically
with radiation dose up to 1,000 Mrad and leveled off. This
increase in the surface energy is mainly due to the
increased concentration of polar groups, mostly carbonyl
groups as confirmed by IR absorption at 1720 en~l, The
increase in the surface energy was accelerated by the
presence of oxygen. The surface energy of graphite fiber
changes slightly with radiation dose.

Both the interaction of free radicals at the’'graphite
fiber/epoxy interface and the increase in the surface energy

would be possible factors which increase the interfacial

strength of the composite after irradiation.
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1. INTRODUCTION

High performance fiber/polymer composite materials are
widely used today in aerospace technology because of their
high strength/weight ratio and dimensional stability.
However, materials used in long-term geosynchronous orbit
operations will be exposed to a substantial amount of
ionizing radiation including gamma-radiation, electrons and
protons. In some cases, a 20 - 30 year space operation will
result in radiation dose levels up to 10,000 Mrad ([1-2].

In order to predict the change in mechanical properties
of fiber/polymer composites under the ionizing radiation, it
is necessary to observe responses of both the fiber and the
matrix to ionizing radiation., The direct observation of
physical and chemical changes at the fiber/matrix interface
is often difficult. Nevertheless, great efforts have been
made to understand the interaction between two phases at the
interface of composites and many mechanisms have been
proposed for the radiation-induced degradation or oxidation
of epoxiles, particularly those based on the diglycidyl ether
of bisphenol A (DGEBA) or, less frequently, based on the
tetraglycidyl diamino diphenyl methane (TGDDM) cured with
diamino diphenyl sulfone (DDS) which is widely uséd today
for high performance composites. However, no mechanisms or
theories have fully explained the radiation-induced chemical
changes in epoxies, in fibers, or at the interface of

composites to-date.



The main objective of this study is to examine
molecular—-structural changes in the TGDDM-DDS epoxy system
upon exposure to high energy radiation and the resultant
surface property changes in both epoxy and graphite fiber to
elucidate the changes in interfaclal strength of graphite

fiber/epoxy composites exposed to the ionizing radiation.



2. LITERATURE REVIEW

2.1. Interaction of Radiation with Matter

2.1.1 Radiation Sources

Radiation sources can generally be classified into
two groups: charged particles and uncharged particles.
Electrons, protons and alpha-particles belong to the former
group, while ultraviolet (uv) light, visible light, x-ray,
gamma-ray and neutrons belong to the laétef group.

If the energy of the particles is much greater than the
binding energy of any orbital electron to the nucleus, the
radiation i1s called ’lonizing radiation’ or 'high energy
radiation’ since the particles can ionize the matter directly
or indirectly depending on the nature of the interaction.
Charged particles directly ionize the molecules of the
irradiated medium while uncharged particles do not directly
ionize the matter but are capable of transferring their
energy to electrons which are themselves ejected from the
irradiated molecule and create secondary ionizing tracks
[3al.

The process in which chemical reactlons are'induced by
the ionizing radiation is often called ‘radiolysis’ in
contrast to ’‘photolysis’ which refers to the process in
which the reaction is induced by low energy photons such as
ultraviolet 1light or visible light. The lowest ionizing

level for most elements and organic compounds is about 15 eV



but many excitation levels may lie close to 5 eV [4a].
Therefore, a photon of uv-light with a wavelength of 2500
A°, which has an energy of 4.96 eV, does not ionize the
matter directly but is able to induce chemical reactions
through electronically excited species [5al. In many
chemical compounds including polymers, however, the prdducts
of photolysis are at least quantitatively similar to those
of radiolysis [6a]l. A comparison between the photolysis
(photo process) and radiolysis (radiation process) is

illustrated schematically in Figure 2.1,
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Figure 2.1. Modified diagram for the most important
processes involving electronically excited states and
preionization states [6al.

where S denotes the excited singlet state and T is the

lowest triplet state.



2.1.2 Energy Transfer Mechanism of Radiation

2.1,2.1 Photons

Depending on the intensity of the photon energy and the
nature of the irradiated medium, electromagnetic photons
such as x-ray, gamma-ray and uv~light may lose their energy
via [4a]:

1) collisions with the orbital electrons (Compton

effect)

2) photoelectric absorption

3) reactions with the nucleus

4) electron/pos;tron pair production
The reduction in intensity of the electromagnetic radiation

(dI4) on passing through a small thickness (dl) of the

medium is given by:

dIy = - Iypdl (2.1)

where Iy is the intensity of the incident radiation before
transmitting the thickness dl and p is ‘total linear
absortion coefficient’ or 'total linear attenuation
coefficient.’ The intensity of the transmitted radiation I

through a thickness 1 is obtained by integrating equation
(2.1) [4a, 5a, 7al:

I = I, exp(-ul) (2.2)

where Io is the intensity of the incident radiation.



PHOTOELECTRIC ABSORPTION: When the incident photon has
an energy greater than the K-binding energy of the absorbing
element, photoelectric absorption occurs mainly in the K-
shell with L-shell contributing approximately 20 % and the
outer shells contributing even less. The vacancy resulting
from ejection of an electron in an inner shell is filled by
an electron from an outer shell with emission of
characteristic x-radiation or low energy Auger electrons
[7al. 1In the photoelectric interaction ‘the entire energy of
a photon is assumed to transfer to a single atomic electron,
Thus, the electron ejected from the atom has an energy E,
which is equal to the difference between the incident photon

energy hlo and the binding energy of the electron in the

E, = bVo- Ey (2.3)

The angles of the ejected electrons to the direction of the
incident photon are mainly 90°, The ionization of molecules
of the absorbing medium by the low energy photons occurs
primarily through the ejected photoelectrons [5a]. At
energies below 60 KeV, the photoelectric effect is the major
process in the case of water [4a]. As the photon'energy
increases, the distribution of the angles of the ejected
electrons shifts increasingly toward the forward direction
and the photoelectric effect becomes less important. The

chance of photoelectric absorption also depends on the




nature of the medium. For example, the photon energy in
which 5 % 1is dissipated by photoelectric absorption is 0.15
MeV for aluminum, 0.4 MeV for copper, 1.2 MeV for tin, and
4.7 MeV for lead. Therefore, except for heavier elements,
the photoelectric effect of Co-60 gamma-radiation with 1,17
MeV and 1.33 MeV, 1s not significant [7b].

COMPTON EFFECT: The loss of the photon energy by Compton
scattering arises from a collislon between a photon and an
electron as in a billiard ball collision., By this
interaction the photon is accelerated with a reduced energy
and the electron is scattered. The energy and momentum of
the original photon are shared between the scattered photon
and the recoil electron. Since both energy and momentum are
conserved, the energy of the scattered photon can be
expressed as following equation:

hVe

hYV = " (2.4)
1 + (hVo/me )(1 - cos & )

where hy) and hl, are energies of scattered photon and the
incident photon, respectively, © is the scattering angle of
recoil photon, and me’ the rest energy of electron.

The energy of arecoil electron Ee is equal i:o the
energy difference between the incident and scattered photons

[5p]:

E, = hVo - hV (2.5)



E, may have values ranging from 0 to a fraction of the
incident energy, 2hVo /(me® + 2hwo), depending on the
scattering angle of the photon [4a]. When the energy of
the incident photon is large compared to the electron
binding energy, the binding energy of electron is generally
ignored and the electron in an atom can be considered as a
free electron. For example, at an energy range of 60 KeV to
25 MeV, Compton scattering is predominant for water in which
the binding energy of electrons is the order of 500 eV [4a,
S5b, 7b]. Either the photoelectric absorption or Compton
scattering may produce one or more fast electrons which
cause major radiation-induced changes in organic materials
producing subsequent ilonization or excitation of the
absorbing molecules [4a].

PHOTO NUCLEAR REACTION: Nuclear reactions produce
radiocoactive species that can also cause continuing
radiochemical changes in the irradiated samples. The energy
required for nuclear reactions depends on the particular
nucleus involved but is usually well above 8 MeV for higher
atomic number (Z) materials and in the region of 10 to 20
MeV for lower-Z materials. For example, natural'lead and C-
12 undergo a (y,n) reaction with a threshold energy of 7.9
MeV and 18.7 MeV, respectively [4a, 5b].

PAIR PRODUCTION: Pair production of an electron and a

positron can occur when a photon with an energy exceeding



1,02 MeV, which is two times the rest energy of electron
(2mec?), is completely absorbed in the field of an atomic
nucleus or, less frequently, an electron [4a, 5al. The
positron is slowed down and eventually combines with an
electron with simultaneous emission of two 0.51 MeV gamma-
rays 1in opposite directions (annihilation radiation) [5al.
Since polymers usually contain atoms of low atomic numbers,
pair production is of little importance in the radiation

chemistry of polymers.

2.1.2.2 High Energy Electrons

Accelerated electrons used in radiation work lose most
of thelr energy by reacting with orbital electrons.
Consequently the primary electron is deviated and the bound
electron may either be given sufficient energy to leave its
parent atom completely (ionization) or move to an orbital of
higher energy (excitatior) [4a].

The observed chemical effects of fast electrons may
therefore be due to positive ions, free electrons, and
excited molecules produced by the primary reactions, or due
to ions and radicals produced subsequently by the products
of the primary reaction. Figure 2.2 summarizes the various
radiation processes which may occur in both liquid and

solid,
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Figure 2.2. Schematic representation of processes leading to

charge separation and excited state formation in liquid and
solid states [8].

where the asterisk denotes an excited state, M* an
excited molecule, A and R molecules which present in the
medium, and D a suitable molecule of low ionization
potential [8].

Although generalities can be stated, theory can not
predict the specific molecular processes which foilow
excitation, lonization and electron attachment. Even when
information about these elementary steps is available fron
gas phase experiments, it 1s questionable to assume that

these findings can be applied directly to 1iquid and so0lid

systems [8].
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Owing to the considerable difference in the masses
involved, very little energy is transmitted to the nuclei
when fast electrons are absorbed by the medium. Thus, only
electrons of high energy are capable of causing chemical
changes by direct displacement of the atomic nucleus or by
subsequent ionization or excitation caused by the motion of
the ejected nucleus through the specimen. The number